51 research outputs found

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Graph Neural Networks for low-energy event classification & reconstruction in IceCube

    Get PDF
    IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.Peer Reviewe

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

    Get PDF
    Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of e290 tera-electron volts. Its arrival direction was consistent with the location of a known g-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multiwavelength campaign followed, ranging from radio frequencies to g-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy g-rays. This observation of a neutrino in spatial coincidence with a g-ray-emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos

    Where are we with light sterile neutrinos?

    No full text
    © 2020 Elsevier B.V. We review the status of searches for sterile neutrinos in the ∌1eV range, with an emphasis on the latest results from short baseline oscillation experiments and how they fit within sterile neutrino oscillation models. We present global fit results to a three-active-flavor plus one-sterile-flavor model (3+1), where we find an improvement of Δχ2=35 for 3 additional parameters compared to a model with no sterile neutrino. This is a 5σ improvement, indicating that an effect that is like that of a sterile neutrino is highly preferred by the data. However we note that separate fits to the appearance and disappearance oscillation data sets within a 3+1 model do not show the expected overlapping allowed regions in parameter space. This “tension” leads us to explore two options: 3+2, where a second additional mass state is introduced, and a 3+1+decay model, where the Îœ4 state can decay to invisible particles. The 3+1+decay model, which is also motivated by improving compatibility with cosmological observations, yields the larger improvement, with a Δχ2=8 for 1 additional parameter beyond the 3+1 model, which is a 2.6σ improvement. Moreover the tension between appearance and disappearance experiments is reduced compared to 3+1, although disagreement remains. In these studies, we use a frequentist approach and also a Bayesian method of finding credible regions. With respect to this tension, we review possible problems with the global fitting method. We note multiple issues, including problems with reproducing the experimental results, especially in the case of experiments that do not provide adequate data releases. We discuss an unexpected 5 MeV excess, observed in the reactor flux energy spectrum, that may be affecting the oscillation interpretation of the short baseline reactor data. We emphasize the care that must be taken in mapping to the true neutrino energy in the case of oscillation experiments that are subject to multiple interaction modes and nuclear effects. We point to problems with the “Parameter-Goodness-of-Fit test” that is used to quantify the tension. Lastly, we point out that analyses presenting limits often receive less scrutiny that signals. While we provide a snapshot of the status of sterile neutrino searches today and global fits to their interpretation, we emphasize that this is a fast-moving field. We briefly review experiments that are expected to report new data in the immediate future. Lastly, we consider the 5-year horizon, where we propose that decay-at-rest neutrino sources are the best method of finally resolving the confusing situation
    • 

    corecore